University of Computer Studies B.C.Sc. (Fifth Year)

CS-504(Computer Vision and Interactive Computer Graphics) (Elective) Course Description

Course Code	CS-504	Course Title	Computer Vision and Interactive Computer Graphics	
Semester Hours	3 hours per week Lecture 1 hour Practical 2 hours	No. of Credit Units	3	
Prerequisites	CS-402, CS-406	Course Coordinator	Dr. Ah Nge Htwe, Professor Faculty of Computer Science	

Course Aims

- To provide knowledge of computer vision and application to students
- To understand computer vision methods and apply them

Course description

This course provides an introduction to computer vision. Major topics include image formation image processing, detection, segmentation and recognition.

Course objectives

- Explain the basic concepts of computer vision.
- Apply computer vision techniques and develop programs to enhance, define, classify and analysis image scenes.

Learning Outcomes

Upon completion of this course, students will:

- Be familiar with both the theoretical and practical aspects of computing with images;
- Have described the foundation of image formation, measurement, and analysis:
- Have implemented common methods for robust image matching and alignment;
- Understand the geometric relationships between 2D;
- Have gained exposure to object and scene recognition and categorization from images and
- Developed the practical skills necessary to build computer vision applications.

Course contents

- Introduction to computer vision
- Image formation
- Image processing
- Feature detection and matching
- Segmentation and recognition

Textbook

1. Richard Szeliski, Computer Vision: Algorithms and Applications, 2010.

Reference Materials:

1. Shapiro and Stockman, Computer Vision, Prentice-Hall, 2001.

University of Computer Studies B.C.Sc. (Fifth Year)

2. David Forsyth and Jean Ponce, Computer Vision: A Modern Approach, 2nd edition, Pearson, 2012.

Course Organization

Your participation in the course will involve six forms of activity.

- 1. Attending the lectures
- 2. Class participation and presentation
- 3. Practical assignments
- 4. Reading assignments
- 5. Exam
- 6. Quiz

Assessment

Exam	50%
Tutorial	10%
Project / Practical	10%
Assignment	10%
Presentation + Quiz	10%
Attendance + Moodle	10%

Tentative Schedule

45 Periods for 15 weeks (50 minutes per period)

No.	Chapter	Page	Period
1	Chapter 1		1
	Introduction		1
2	1.1 What is computer vision?	3-10	1
	1.2 A brief history	3-10	1
3	Chapter 2		7
	Image Formation		,
4	2.1 Geometric primitives and transformations		
	2.1.1 Geometric primitives	29-33	2
	2.1.2 2D transformations		
5	2.3 The digital camera	69	1
	2.3.2 Color	0)	1
6	Lab + Discussion		4
7	Chapter 3		12
	Image Processing		12
8	3.1 Point		
	3.1.1 Pixel transforms		
	3.1.2 Color transforms	89-94	2
	3.1.3 Compositing and matting		
	3.1.4 Histogram equalization		
9	3.2 Linear filtering		
	3.2.1 Separable filtering	09 104	2
	3.2.2 Examples of linear	98-104	3
	3.2.3 Band-pass and steerable filters		

University of Computer Studies B.C.Sc. (Fifth Year)

_	B.C.Sc. (Fifth Year)		
10	3.3 More neighborhood operators		
	3.3.1 Non-linear	108-	3
	3.3.2 Morphology	113	3
	3.3.3 Distance transforms		
11	3.6 Geometric transformations	143	2
12	Lab + Discussion		2
13	Chapter 4		7
	Feature detection and matching		,
14	4.1 Points and patches		
	4.1.1 Feature detectors	183-	2
	4.1.2 Feature descriptors	200	2
	4.1.3 Feature matching		
15	4.2 Edges	210-	2
	4.2.1 Edge detection	214	3
16	Lab + Discussion		2
17	Chapter 5		5
	Segmentation		3
18	5.3 Mean shift and mode finding	254-	2
	5.3.1 K-means and mixtures of Gaussians	256	3
19	Exercises + Lab		2
20	Chapter 14		10
	Recognition		13
21	14.1 Object detection	278-	
	14.1.1 Face detection	285	2
	14.1.2 Pedestrian detection	200	
22	14.2 Face recognition	288	3
23	14.3 Instance recognition	602	1
24	14.4 Category recognition	611	1
25	14.5 Context and scene understanding	625-	4
	14.5.1 Learning and large image collections	627	1
26	Lab + Discussion		5